Electron localization in a two-channel tight-binding model with correlated disorder
نویسندگان
چکیده
منابع مشابه
Localization on a two-channel model with cross-correlated disorder.
We study the wavepacket dynamics in a two-channel Anderson model with correlated diagonal disorder. To impose correlations in the disorder distribution we construct the on-site energy landscape following both symmetric and antisymmetric rules. Our numerical data show that symmetric cross-correlations have a small impact on the degree of localization of the one-particle eigenstates. In contrast,...
متن کاملLight transport and localization in two-dimensional correlated disorder.
Structural correlations in disordered media are known to affect significantly the propagation of waves. In this Letter, we theoretically investigate the transport and localization of light in 2D photonic structures with short-range correlated disorder. The problem is tackled semianalytically using the Baus-Colot model for the structure factor of correlated media and a modified independent scatt...
متن کاملMott-Hubbard transition versus Anderson localization in correlated electron systems with disorder.
The phase diagram of correlated, disordered electron systems is calculated within dynamical mean-field theory using the geometrically averaged ("typical") local density of states. Correlated metal, Mott insulator, and Anderson insulator phases, as well as coexistence and crossover regimes, are identified. The Mott and Anderson insulators are found to be continuously connected.
متن کاملThe electron density function of the Hückel (tight-binding) model
The Hückel (tight-binding) molecular orbital (HMO) method has found many applications in the chemistry of alternant conjugated molecules, such as polycyclic aromatic hydrocarbons (PAHs), fullerenes and graphene-like molecules, as well as in solid-state physics. In this paper, we found analytical expressions for the electron density matrix of the HMO method in terms of odd-powers of its Hamilton...
متن کاملCalculation for Energy of (111) Surfaces of Palladium in Tight Binding Model
In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects at temperature T=0 K, this means that no entropic term will be pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2007
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.76.134202